Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Temperature dependence of dielectric polarization and strain behaviors for rhombohedral PIMNT single crystal with different crystallographic orientations

Identifieur interne : 001406 ( Main/Repository ); précédent : 001405; suivant : 001407

Temperature dependence of dielectric polarization and strain behaviors for rhombohedral PIMNT single crystal with different crystallographic orientations

Auteurs : RBID : Pascal:13-0017392

Descripteurs français

English descriptors

Abstract

In this study, the dielectric, ferroelectric and strain behaviors of 0.35Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3) O3-0.30PbTiO3 (0.35PIN-0.35PMN-0.30PT or PIMNT35/35/30) single crystal with different crystallographic orientations were investigated as a function of temperature. The Curie temperature Tc and rhombohedral to tetragonal phase transition temperature Trt were risen up to 188 °C and 120 °C, respectively. The coercive field EC and remnant polarization Pr for (001) and (110) oriented crystals were found to be 5.8 kV/cm, 27.5 μC/cm2 and 8.5 kV/cm, 38.7 μC/cm2 at room temperature, respectively. The polarization data were obtained from the hysteresis loops of the crystal measured in a wide temperature range. The unipolar strain level was found to be 0.65% at an electric field of 32 kV/cm, with piezoelectric strain coefficient d33 ∼ 2000 pC/N for (001) oriented crystal. Besides, the intermediate metastable state was induced at an electric field of 12.5 kV/cm for (1 1 0) oriented crystal, which can be utilized in large power transducers such as sonar and actuator.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0017392

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Temperature dependence of dielectric polarization and strain behaviors for rhombohedral PIMNT single crystal with different crystallographic orientations</title>
<author>
<name>WEI WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 201800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom</s1>
<s2>Kowloon</s2>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Kowloon</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Graduate School of the Chinese Academy of Sciences</s1>
<s2>Beijing 100049</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>XIAOBING LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 201800</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SIU WING OR</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom</s1>
<s2>Kowloon</s2>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Kowloon</wicri:noRegion>
</affiliation>
</author>
<author>
<name>CHUNG MING LEUNG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom</s1>
<s2>Kowloon</s2>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
<wicri:noRegion>Kowloon</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIE JIAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 201800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Graduate School of the Chinese Academy of Sciences</s1>
<s2>Beijing 100049</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>YAOYAO ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 201800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Graduate School of the Chinese Academy of Sciences</s1>
<s2>Beijing 100049</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>XIANGYONG ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 201800</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HAOSU LUO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 201800</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0017392</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0017392 INIST</idno>
<idno type="RBID">Pascal:13-0017392</idno>
<idno type="wicri:Area/Main/Corpus">001460</idno>
<idno type="wicri:Area/Main/Repository">001406</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0925-8388</idno>
<title level="j" type="abbreviated">J. alloys compd.</title>
<title level="j" type="main">Journal of alloys and compounds</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coercive force</term>
<term>Crystal orientation</term>
<term>Curie point</term>
<term>Dielectric polarization</term>
<term>Electric field effects</term>
<term>Ferroelectric hysteresis</term>
<term>Indium Lead Niobates Mixed</term>
<term>Lead magnesium niobates</term>
<term>Lead titanates</term>
<term>Monocrystals</term>
<term>Piezoelectricity</term>
<term>Relaxor</term>
<term>Ternary systems</term>
<term>Tetragonal lattices</term>
<term>Transducers</term>
<term>Transition element compounds</term>
<term>Trigonal lattices</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Polarisation diélectrique</term>
<term>Orientation cristalline</term>
<term>Point Curie</term>
<term>Force coercitive</term>
<term>Effet champ électrique</term>
<term>Piézoélectricité</term>
<term>Hystérésis ferroélectrique</term>
<term>Transducteur</term>
<term>Réseau rhomboédrique</term>
<term>Monocristal</term>
<term>Indium Plomb Niobate Mixte</term>
<term>Titanate de plomb</term>
<term>Relaxeur</term>
<term>Système ternaire</term>
<term>Réseau quadratique</term>
<term>Composé de métal de transition</term>
<term>Magnoniobate de plomb</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this study, the dielectric, ferroelectric and strain behaviors of 0.35Pb(In
<sub>1/2</sub>
Nb
<sub>1/2</sub>
)O
<sub>3</sub>
-0.35Pb(Mg
<sub>1/3</sub>
Nb
<sub>2/3</sub>
) O
<sub>3</sub>
-0.30PbTiO
<sub>3</sub>
(0.35PIN-0.35PMN-0.30PT or PIMNT35/35/30) single crystal with different crystallographic orientations were investigated as a function of temperature. The Curie temperature T
<sub>c</sub>
and rhombohedral to tetragonal phase transition temperature T
<sub>rt</sub>
were risen up to 188 °C and 120 °C, respectively. The coercive field E
<sub>C</sub>
and remnant polarization P
<sub>r</sub>
for (001) and (110) oriented crystals were found to be 5.8 kV/cm, 27.5 μC/cm
<sup>2</sup>
and 8.5 kV/cm, 38.7 μC/cm
<sup>2</sup>
at room temperature, respectively. The polarization data were obtained from the hysteresis loops of the crystal measured in a wide temperature range. The unipolar strain level was found to be 0.65% at an electric field of 32 kV/cm, with piezoelectric strain coefficient d
<sub>33</sub>
∼ 2000 pC/N for (001) oriented crystal. Besides, the intermediate metastable state was induced at an electric field of 12.5 kV/cm for (1 1 0) oriented crystal, which can be utilized in large power transducers such as sonar and actuator.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>545</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Temperature dependence of dielectric polarization and strain behaviors for rhombohedral PIMNT single crystal with different crystallographic orientations</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WEI WANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>XIAOBING LI</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SIU WING OR</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CHUNG MING LEUNG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JIE JIAO</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>YAOYAO ZHANG</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>XIANGYONG ZHAO</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>HAOSU LUO</s1>
</fA11>
<fA14 i1="01">
<s1>Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom</s1>
<s2>Kowloon</s2>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Graduate School of the Chinese Academy of Sciences</s1>
<s2>Beijing 100049</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>57-62</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000505440150110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>31 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0017392</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this study, the dielectric, ferroelectric and strain behaviors of 0.35Pb(In
<sub>1/2</sub>
Nb
<sub>1/2</sub>
)O
<sub>3</sub>
-0.35Pb(Mg
<sub>1/3</sub>
Nb
<sub>2/3</sub>
) O
<sub>3</sub>
-0.30PbTiO
<sub>3</sub>
(0.35PIN-0.35PMN-0.30PT or PIMNT35/35/30) single crystal with different crystallographic orientations were investigated as a function of temperature. The Curie temperature T
<sub>c</sub>
and rhombohedral to tetragonal phase transition temperature T
<sub>rt</sub>
were risen up to 188 °C and 120 °C, respectively. The coercive field E
<sub>C</sub>
and remnant polarization P
<sub>r</sub>
for (001) and (110) oriented crystals were found to be 5.8 kV/cm, 27.5 μC/cm
<sup>2</sup>
and 8.5 kV/cm, 38.7 μC/cm
<sup>2</sup>
at room temperature, respectively. The polarization data were obtained from the hysteresis loops of the crystal measured in a wide temperature range. The unipolar strain level was found to be 0.65% at an electric field of 32 kV/cm, with piezoelectric strain coefficient d
<sub>33</sub>
∼ 2000 pC/N for (001) oriented crystal. Besides, the intermediate metastable state was induced at an electric field of 12.5 kV/cm for (1 1 0) oriented crystal, which can be utilized in large power transducers such as sonar and actuator.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70G65</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70G80D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Polarisation diélectrique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Dielectric polarization</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Orientation cristalline</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Crystal orientation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Point Curie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Curie point</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Force coercitive</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Coercive force</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Effet champ électrique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Electric field effects</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Piézoélectricité</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Piezoelectricity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Hystérésis ferroélectrique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Ferroelectric hysteresis</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Histéresis ferroeléctrica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Transducteur</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Transducers</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Réseau rhomboédrique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Trigonal lattices</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Indium Plomb Niobate Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Indium Lead Niobates Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Titanate de plomb</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Lead titanates</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Relaxeur</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Relaxor</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Système ternaire</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Ternary systems</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Réseau quadratique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Tetragonal lattices</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Composé de métal de transition</s0>
<s5>48</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Transition element compounds</s0>
<s5>48</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Magnoniobate de plomb</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Lead magnesium niobates</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="17" i2="3" l="SPA">
<s0>Niobato de Magnesio y plomo</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>007</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001406 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001406 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0017392
   |texte=   Temperature dependence of dielectric polarization and strain behaviors for rhombohedral PIMNT single crystal with different crystallographic orientations
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024